

Program Area Presentation

Energy Sciences Network (ESnet)

Advanced Scientific Computing Research Strategic Planning workshop

George Seweryniak

July 22, 2203

In coordination with Thomas Ndousse Mary Anne Scott

Contribution of Program Element to Overall ASCR Strategic Goal

 ESnet is a high-speed data communications network which allows Department of Energy (DOE) scientists and collaborators worldwide to use unique DOE research facilities and computing resources independent of time and location with state-of-the-art performance levels.

> Building an Integrated Network Environment for Distributed Science

Planning horizon for Program Element

- Short term 1-3 yrs
 - Backbone and site upgrades to allow the DOE high impact science programs to achieve their goals
 - Accommodate 100% growth in traffic each year
- Long term 1-5 yrs
 - Implementation of new network technologies and topologies for projected future applications requirements
- Keep data flowing provide DOE scientists with the network capabilities they need to support their science

Areas that the Element currently invests in and Research areas that rely on the ESnet infrastructure support

Connectivity

- Distributed Network performance measurement and analysis
- High performance transport protocols
- Multicast and secure group communication
- High speed, ubiquitous, and reliable backbone infrastructure
- Quality of Service (QoS) services
- New protocol implementation IPv6

Collaborative technologies

- Access Grid Technology
- Data conferencing
- Ad- hoc H323 (IP based) conferencing
- Multi platform Video conferencing services

Security

- Public Key Infrastructure
- System scanning and intrusion detection tools

How does Program Element transfer knowledge or provide services to application scientists?

- Energy Sciences Steering Committee (ESSC)
- Energy Sciences Site Coordinating Committee (ESCC)
- Incorporates emerging services as they mature into ESnet
- Internet Engineering Task Force (IETF) partnerships
- Outreach
 - Interagency Large Scale Network (LSN) membership
 - Multi agency/Vendor Joint Engineering Task (JET)Force membership
 - Workshops, conferences, and publications

Program Element Strengths

- Provides end-to end connectivity that is not available over the commodity Internet
- Community involvement, organization and support (ESSC, ESCC)
 - Operated and managed by user community (scientists)
 - Strong collaboration with the network research and middleware programs
- Single national and international identity for DOE research networking
 - Many long term working relationships with national and international peers
- Long track record and extensive experience in meeting the ever expanding programmatic requirements within budget
- Significant leveraging of overall effort and cost savings with central support staff on 24x7 basis
- Responsive to the special demands of DOE research community
 - QoS, jumbo frames, scavenger service
 - CCC/MPLS for NNSA

Program Area Weaknesses

- Cultural inertia
 - Programmatic networking needs requirements projections
 - Success metrics for production networks conflicts with success metrics for R&D networks
 - "Networking will be there" mentality
- Technology barriers
 - Perceived low cost of providing high bandwidth services
 - Need it yesterday not enough time for technology to catch up
 - Unrealistic performance expectations from current technology
 - Less than mature router/switch code
- Organizational barriers
 - Ineffective integration of program responsibilities and accountabilities moving from research to production
 - Long time frame for moving of new technologies into production network

Program Element Opportunities

- Abundant optical capacity exists in core networks to develop cost-effective agile network infrastructures to support high-impact science applications
- Develop terabit networks and services for interconnecting data analysis and management centers associated with Petascale computers
- Growth in "grids" will create requirements for new central services
- Apply research network technology improvements to accelerate the development of advanced networking services
- Develop additional distributed security services to protect the network and provide user security without cumbersome user services

Program Element Threats

- Programmatic needs will outstrip network projected growth rate and budget
- "Adequate Networking will always be there" assumption by program elements
- Long-term planning for facilities and programs
- Security policies may neutralize needed performance advances
- Potential reduced longevity of at-risk telecomm vendors due to current market conditions
- Highly specialized network technologies beyond scope of industry

Program Element Gap Analysis

End-to-end performance

- Multi-domain and site network performance improvements
- Development of reliable Ultra high-speed transport protocols
- Distributed Network measurement and prediction

Cyber security

- scalable distributed authentication and authorization systems
- Minimal impact on the user and network

Integrated testbeds and production networks

- Network research to accelerate advanced technologies
- Experimental deployment of high-impact applications
- Ability to use the production network to scale network research testbeds with minimal impact on production